Product Description | A high density of the acetylated lysine antibody is immobilized to agarose beads. The product can be utilized as an affinity matrix for rapid isolation and purification of proteins/peptides with acetyl lysine residues. | | The acetylated protein signal as determinated by ELISA titration (OD50 titer). The acetlated proteins were eluted from 1 mL the Rabbit anti-Acetyllysine Agarose (ICP0388) and immobilized on microrplate, followed by detection with Mouse anti-Acetylated lysine HRP. Rabbitt anti-Biotin Agarose (1 mL) was utilized as the negative control. The maximum binding of acetylated BSA with ICP0388-5MG. -50 µl of ICP0388-5MG were incubated with 1 mg of acetylate BSA in a 1 ml tube for 60 min. - After washing with PBST 4 times, the bound acetylated BSA was eluted with 1 ml of 0.5 M HCl -5 µl / lane of the eluted acetylated BSA was resolved by SDS-PAGE and blotted wih monoclonal Mouse anti-Acetylated Lysine (ICP0390) -ECL exposure 3 seconds |
Formulation | 0.5 mL of agarose beads suspended in 1 mL of slurry |
Antibody Immobilized | 10 mg/mL antibody is covalently linked through amide bonds with NHS activated-SMCC, which further conjugates to thiolated agarose beads via thiol ether bonds. |
Specificity | This antibody affinity matrix selectively captures proteins/peptides with acetylated lysine residues (N-epsilon). No cross creation to methylated proteins/peptides. |
BindingCapacity | Approximately 0.5-1 mg of acetylated histone / mL slurry. |
Applications | Rapid isolation and purification of proteins/peptides with acetylated lysine residues from cell lysate or protease-digested mixtures. |
Scientific Description | Protein acetylation is a form of post-translational modification known to regulate many diverse biological processes. Detection, isolation and identification of acetylated proteins/peptides is essential in proteomic studies. Affinity chromatography is one of the most efficient and rapid methods to enrich and purify the acetylated species for further MS/MS identification. |
Storage & Stability | Product is stable for 30 days at room temperature. For extended storage, store product at -20°C. Do not aliquot and shake thoroughly before use.Expiration date is one year from date of shipping if properly stored. |
Product Specific References | - 1.Science. 2009.325(5942): 834-840. doi:10.1126/science.1175371.
- 2.Cell. 2010.140(2): 257-267. doi:10.1016/j.cell.2009.12.031.
- 3.Mol. Cell.2010.39(2): 247-258. doi:10.1016/j.molcel.2010.07.006.
- 4.Proteomics. 2010.10(5): 1029-1039. doi:10.1002/pmic.200900602.
- 5.Plant Physiol. 2011.155(4): 1779-1790. doi:10.1104/pp.110.171595.
- 6.Euro. J. Cell Biol.2011.90(1-2): 128-135. doi:10.1016/j.ejcb.2010.09.004.
- 7.Mol. Cell. Proteomics.2012.11(11): 1510-1522. doi:10.1074/mcp.M112.017251.
- 8.Proc. Natl. Acad. Sci. U.S.A.2012.109(28): 11133-11138. doi:10.1073/pnas.1208669109.
- 9.J. Proteome Res. 2012.11(3): 1633-1643. doi:10.1021/pr2008384.
- 10.J. Lipid Res. 2012.53(9):1864-1876. doi:10.1194/jlr.M026567.
- 11.Cell. 2012.149(1): 214-231. doi:10.1016/j.cell.2012.02.013.
- 12.Cell.2012.150(3): 620-632.doi:10.1016/j.cell.2012.06.027.
- 13.Exp. Hematol. 2012.40(4): 342-355. doi:10.1016/j.exphem.2011.12.005.
- 14.PLoS ONE.2012.7(12): e50545. doi:10.1371/journal.pone.0050545.
- 15.PLoS Genet. 2012.8(9): e1002948. doi:10.1371/journal.pgen.1002948.
- 16.Euro. J. Cell Biol.2012.91(11-12): 950-960. doi:10.1016/j.ejcb.2012.07.001.
- 17.J. Proteomics.2013.79: 60-71. doi:10.1016/j.jprot.2012.12.001.
- 18.Biochem. Biophys. Res. Commun.2013.435(3): 403-407. doi:10.1016/j.bbrc.2013.04.101.
- 19.J. Biol. Chem.2013.288(36): 26209-26219. doi:10.1074/jbc.M113.483396.
- 20.J. Biol. Chem.2013.288(40): 29036-29045. doi:10.1074/jbc.M113.486753.
- 21.Mol. Microbiol. 2013.89(4): 660-675. doi:10.1111/mmi.12303.
- 22.Proc. Natl. Acad. Sci. U.S.A.2013.110(9): 3339-3344. doi:10.1073/pnas.1217632110.
- 23.Mol. Cell.2013.51(2): 265-272. doi:10.1016/j.molcel.2013.06.003.
- 24.Mol. Cell. Biol.2013.33(8): 1487-1502.doi:10.1128/MCB.00971-12.
- 25.PLoS ONE.2013.8(6): e64953. doi:10.1371/journal.pone.0064953.
- 26.Nature Methods.2013.10(7): 634-637. doi:10.1038/NMETH.2518.
- 27.Diabetes.2013.62(10): 3404–3417. doi:10.2337/db12-1650.
- 28.PLoS ONE. 2013.8(7): e67513. doi:10.1371/journal.pone.0067513.
- 29.J. Clin. Invest.2014.124(2):768-784. doi:10.1172/JCI69413.
- 30.PLoS ONE. 2014.9(2): e89283. doi:10.1371/journal.pone.0089283.
- 31.Mol. Syst. Biol.2014.10(11): 762.doi:10.15252/msb.20145227.
- 32.PLoS ONE. 2014.9(3):e91039. doi:10.1371/journal.pone.0091039.
- 33.Mol. Biosyst.,2015.11(3): 908-922 doi:10.1039/c4mb00490f.
- 34.Methods in Molecular Biology,2015.1295:275-292.doi:10.1007/978-1-4939-2550-6 21.
- 35.PloS one. 2015.10(10): e0140619. doi:10.1371/journal.pone.0140619.
- 36.J. Proteomics. 2015.128: 352-364. doi:10.1016/j.jprot.2015.08.015.
- 37.Plant Mitochondira: Methods and Protocols. 2015.107-121. doi:10.1007/978-1-4939-2639-8_7.
- 38.J Virol.2016 Feb 3. pii: JVI.03175-15.doi:10.1128/JVI.03175-15.
- 39.PLoS ONE. 2015.10(5): e0126242. doi:10.1371/journal.pone.0126242.
- 40.Nat Commun. 2015.6: 7726. doi:10.1038/ncomms8726.
- 41.Nat Biotechnol.2015.33(4): 415-423. doi:10.1038/nbt.3130.
- 42.EMBO Rep.2016.17(3): 455-469.doi:10.15252/embr.201541132.
- 43.Arch. Biochem. Biophys.2016.598: 1-10. doi:10.1016/j.abb.2016.03.025.
- 44. Cancers. 2016.8(3):37. doi:10.3390/cancers8030037.
- 45. mSystems.2016.1(3): e00005-16.doi:10.1128/mSystems.00005-16.
- 46. J Biol Chem. 2016.291(11):5484-5499. doi:10.1074/jbc.M115.707091.
- 47. Sci Rep. 2016.6:19722.doi:10.1038/srep19722.
- 48. JCI Insight. 2016.2(1):e84897.doi:10.1172/jci.insight.84897.
- 49. Archives of Biochemistry and Biophysics. 1-10. 2016. 598.
- 50. Molecular & Cellular Proteomics. 2016. doi: 10.1074/mcp.O116.065219
- 51. American Society for Microbiology. 2016. 1(3): 1-19. doi: 10.1128/mSystems.00005-16.
- 52. Cancers. 2016. 8(3): 1-13. doi: 10.3390/cancers8030037.
- 53. JCI Insight. 2016. 1(2): 1-14. doi: 10.1172/jci.insight.84897.
- 54. Universitat zu Koln. 2016. 1-169.
- 55. EMBO Press. 2016. 17(3): 455-469. doi: 10.15252/embr.201541132.
- 56. Nature Biotechnology. 2016. 34(11): 1198-1205. doi: 10.1038/nbt.3681.
- 57. Journal of Visualized Experiments. 2016. 108. doi: 10.3791/53563.
- 58. BioRxiv. 2016. doi: https://doi.org/10.1101/057174.
- 59. Journal of The American Society for Mass Spectrometry. 2016. 27 (11) 1758-1771. doi: 10.1007/s13361-016-1476-zg.
- 60. The Journal of Biological Chemistry. 2016. 291 (11) 5484-5499 doi: 10.1074/jbc.M115.707091.
- 61. Molecular & Cellular Proteomics. 2016. 15 (2) 493-505. doi: 10.1074/mcp.M115.049288.
- 62. PLoS ONE. 2017. 12(6): e0178603. doi: 10.1371/journal.pone.0178603
- 63. J. of Molecular Medicine. 2018. 1-19 online doi:10.1007/s00109-017-1616-3
- 64. PNAS. 2018. 115 (1): 210-215. doi: 10.1073/pnas.1717519115
- 65. Methods Mol Biol. 2017;1653:65-81. doi: 10.100225-8_57/978-1-4939-7.
- 66.Methods Mol Biol. 2015;1305:107-21. doi: 1007/978-1-4939-2639-8_7.
- 67. Mitochondrion. 2014 Nov;19 Pt B:252-60. doi: 10.1016/j.mito.2014.03.004
68. Front. Cell. Infect. Microbiol. 2018. doi: 10.3389/fcimb.2017.00537 69. Nature Cell Biology. 2019. 21: 251-262. doi: 10.1038/s41556-018-0268-z. 70. Protein Acetylation. 2019.1983:57-77. doi:10.1007/978-1-4939-9434-2_5 71. Molecular Metabolism. 2019. 25: 35-49. doi:10.1016/j.molmet.2019.04.008 72. The Plant Journal. 2019.99(1): 176-194. doi:10.1111/tpj.14315 73. Molecular Cell. 2019.74(6): 1250-1263. doi:10.1016/j.molcel.2019.04.009 74.Connective Tissue Research. 2019. doi:10.1080/03008207.2019.1648443 75.Cell Reports. 2019. 29(3). doi:10.1016/j.celrep.2019.09.023 76.Journal of Molecular Cell Biology. 2019. doi:10.1093/jmcb/mjz099 77. Nature Cell Biology. 2019. 21: 1248-1260. doi:10.1038/s41556-019-0397-z 78. J. of Proteome Research. 2020. 19: 962-972. doi:10.1021/acs.jproteome.9b00853 79. Scientific Reports, 2020 10(1), 2464. doi:10.1038/s41598-020-59244-4 80.Mol. Systems Biol., 2020, 16(7), e9464. doi:10.15252/msb.20209464 81. Journal of Mol. Cell Biol.,2020, 12(6), 424–437. doi:10.1093/jmcb/mjz099 82.Mol. & Cell. Proteomics,2020, 19(8), 1303–1309.doi:10.1074/mcp.RA119.001897
83. Viruses, 2020, 12(9), 976. doi: 10.3390/v12090976
|